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Abstract

In this paper a Euler–Bernoulli-like model of layered piezoelectric beams is presented. It describes more accurately

than the others already presented in the literature both transverse (Poisson and piezoelectrically induced) cross-sec-

tional deformations and through-the-thickness variations of the electric field and electric displacement. A deductive

approach based on a mixed variational formulation is adopted and distributions of deformation, stress, electric field

and electric displacement are simultaneously prescribed. The attention is focused on the choice of the most fitting

assumptions to recover complex 3D cross-sectional field distributions. In particular, transverse interactions between

different layers are taken into account by enforcing specific conditions on transverse stress through the Lagrange

multipliers method. The estimate of electromechanical beam constitutive coefficients is discussed and comparison with

standard modelling approaches, which assume either vanishing transverse stresses or vanishing transverse strains, is

emphasized. For a sandwich piezoelectric beam and for a two-layer beam, expressions of the beam constitutive coef-

ficients are provided and the main features of the proposed model are highlighted by presenting the through-the-

thickness distribution of the 3D state fields associated to beam-axis deformations and applied voltage. As a main

peculiarity, the proposed beam model is able to coherently estimate the equivalent piezoelectric capacitance also when

the thickness of elastic and piezoelectric layers is comparable.
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1. Introduction

Composite materials made of active piezoelectric layers have been widely used for their sensor and
actuator functions and research in this area opens many applications in the domain of adaptive structures
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and structural control. Piezoelectric materials, and especially piezoelectric beam composites, are excellent

candidates for designing adaptive devices or smart materials, and numerous applications in the domain of

advanced technology have been proposed, running from aerospace or automotive (shape control of space

antennas or telescopes, vibration control of helicopter blades, noise reduction, etc.) to micropositioners or
microactuators (in medical apparatuses, measurement devices, robotics, etc.), as reported by Rao and

Sunar (1994), Tani et al. (1998), Chee et al. (1998), and Chopra (2002). The high performance of piezo-

electric composites becomes a requirement in the design of vibration control systems. Especially, piezo-

electric elements can be used as components for passive damping systems, thereby avoiding complex

control and feedback strategies (see e.g. Anderson and Hagood, 1994; Hagood and Von Flotow, 1991).

The present work attempts to present a consistent and efficient deductive approach to piezoelectric

laminated beams. Slender beam-shaped structures incorporating piezoelectric materials are often used in

engineering applications (robotic arms, airplane wings, rotor blades, etc.). One dimensional modelling
allows for a thumbnail description of their static and dynamic behavior. As the related one-dimensional

boundary-value problems usually can be solved analytically, it provides useful tools for structural design

and control applications. When deductive approaches are followed, one-dimensional models of piezo-

electric laminated beams are obtained from a three-dimensional formulation by assuming a priori distri-

bution of mechanical and electrical state fields. In such a micro–macro identification procedure, the beam

balance equations are found and the corresponding constitutive relations are expressed as functions of the

material and geometrical data at the three-dimensional level. The so-called induced strain models seem to

supply the simplest description of the actuation mechanism in laminated piezoelectric beams (see e.g. Al-
zahrani and Alghamdi, 2003). They can be classified into those assuming a simple extensional strain within

the piezoelectric elements (uniform strain model, see Park et al., 1996; Hong and Chopra, 1999), and those

accounting for extensional and bending deformations of the piezoelectric elements as prescribed by stan-

dard Bernoulli–Euler beam theory (see Crawley and de Luis, 1987; Crawley and Anderson, 1990). A

number of more refined and consistent approaches to piezoelectric laminated beam have been proposed

(reviews can be found in Chopra, 2002; Saravanos and Heyliger, 1999; Gopinathan et al., 2000). They

include the description of shear deformations, effects of bonding layers, full two-fold electromechanical

coupling (i.e. including both of direct and inverse piezoelectric effects), etc. Such models, although one-
dimensional, can become very complex by including several variables of microstructures to mimic the three-

dimensional behavior. However, as underlined also by Beckert and Pfundtner (2002), most of these models

are based on assumptions on the stress state that are too restrictive. For example, in unshearable models, it

is usually assumed (see e.g. Alzahrani and Alghamdi, 2003) that the stress tensor is in the form (refer to

Fig. 1 for notation and beam cross-sectional geometry)
T ¼ T11ðe1 � e1Þ: ð1Þ
Due to this assumption, transverse interactions (in the width e2 direction) between different layers are

neglected and each layer is left free to deform in the transverse direction independently of the others,

without respecting the bonding condition. The consequence of this assumption is reflected in an incorrect

estimate of the one-dimensional constitutive equations. This issue is particularly relevant in layered beams
including piezoelectric layers polarized along the thickness (e3 direction). Indeed, when a potential differ-

ence is applied between the electrodes of a piezoelectric layer, it naturally tends to isotropically extend (or

shrink) in the plane orthogonal to the polarization axis (e1–e2 plane). This behavior is in competition with

the Poisson effect in the elastic layer: when one tries to extend an elastic layer in one direction (say e1),

shrinking in the other direction (say e2) is typically induced. When piezoelectric and elastic layers are

bonded together to form a laminated piezoelectric beam, their contrasting behavior is conciliated by the

appearance of non-negligible normal stresses both in the axial direction (T11 stress) and transverse direction
(T22 stress). In Beckert and Pfundtner (2002) this problem is discussed: assumption (1) is improved by
including transverse ðT22Þ stresses, in order to describe more accurately the complex interactions between
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Fig. 1. Generic layered piezoelectric beam: cross-section.
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different layers in composite piezoelectric laminates. However, only actuation functions are considered and

no attention is paid to the determination of purely electrical properties such as the equivalent piezoelectric

capacitance. Its incorrect estimate can be misleading when piezoelectric elements are used as transducers, as

in passive vibration control devices similar to the electric vibration absorber studied by Hagood and Von
Flotow (1991). Indeed, in this case, an optimal design of the electric controller is strongly influenced by

mechanical, coupling, and electrical properties of the layered piezoelectric beam.

The aim of the present work is to discuss the consequences of transverse interactions between different

layers in piezoelectric laminates and to propose a novel efficient model including both of sensory and

actuation effects. The model thus proposed is based on (i) equivalent single-layer Bernoulli–Euler kine-

matics (linear strain distribution along the thickness direction of the beam); (ii) layerwise linear distribution

of mechanical stress with non-vanishing transverse normal stress (i.e. T22); (iii) layerwise linear distribution
of electric potential; (iv) layerwise constant distribution of the electric displacement. In particular, we try to
refine the description achieved by simplest modelling approaches without adding additional degrees of

freedom to describe more complex phenomena such as shear effects, bonding-layer effects, higher-order

distribution of electric field and displacement, etc. As a main peculiarity, the proposed model accounts for

transverse interactions between different layers by including a non-vanishing distribution of normal

transverse stresses. These additional fields are found among those verifying further integral force balance

laws, corresponding to transverse projections of force and moment balance laws for each beam cross-

section. These conditions will be referred to as weak conditions on transverse stress. Such a model, char-

acterized by assuming null transverse stress resultants (NSR model), is compared to standard models
assuming either pointwise null transverse stress (NS model), or null transverse sectional deformations (ND

model). One of the purposes of the present work is to examine and discuss how the newly introduced stress

field T22 and the associated weak conditions on it enhance the estimate of the electromechanical constitutive
properties of piezoelectric laminated beams.

The proposed beam model is deduced from the three-dimensional description by assuming at the same

time hypotheses on strain and stress, on electric field and electric displacement. To this end, a mixed

variational formulation of the Hellinger–Prange–Reissner type is adopted (see He, 2000; Teresi and Tiero,

1997; Washizu, 1982). Moreover, Lagrange multipliers are introduced to impose in the variational for-
mulation the different conditions on transverse stress.

The prerequisites for three-dimensional piezoelectricity (equations of motion, boundary conditions and

constitutive equations) and the associated mixed variational formulation are briefly recalled in the next

section. In Section 3, beam governing equations are deduced from the mixed variational formulation by

assuming peculiar distributions of three-dimensional state fields. In particular, governing equations for

models assuming either null transverse stress resultants (NSR), pointwise null transverse stress (NS), or null

transverse deformations (ND) are derived. In Section 4, comparisons between the different models are

made and the main properties of the NSR model are underlined. To this end, particular cross-sectional
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configurations are considered: a three-layered sandwich piezoelectric beam with in-phase parallel connected

piezoelectric layers; a three-layered sandwich piezoelectric beam with counter-phase parallel connected

piezoelectric layers; and a two-layered piezoelectric beam. For the different conditions on the transverse

stress, analytical formulas and numerical illustrations of beam constitutive coefficients are provided. Their
dependence on material properties and the relative thickness ratio between different layers are analyzed.

The through-the-thickness distributions of stress, strain, electric field and electric displacement are also

presented. Lastly, Section 5 is devoted to the summary and discussion of the most pertinent results and

extensions of the present beam model are suggested.
2. Mixed variational formulation of 3D linear piezoelectricity

In this section, the basic equations of three-dimensional linear piezoelectricity are recalled and a mixed

variational formulation for the associated boundary value problem is proposed. Moreover, the application

of the mixed variational formulation to structural modelling is briefly discussed.

2.1. Equations of linearly piezoelectricity

Consider a piezoelectric body that is identified by means of its reference configuration B. In the quasi-
electrostatic approximation, the actual kinematical state of the system is described by the mechanical
displacement field u and by the electric potential u. Let us denote by oB the boundary of B, by ouB and

ofB the parts of oB where the displacements u0 and the tractions f0 are imposed, by ouB and oqB the parts
on which the electric potential u0 and the charge density q0 are imposed (ouB [ ofB ¼ ouB [ oqB ¼ oB
and ouB \ ofB ¼ ouB \ oqB ¼ ;). Let S be the linearized strain tensor, T the Cauchy stress tensor, D the
electric displacement vector, and E the electric field vector inside the piezoelectric body.

In the quasi-electrostatic approximation, a strong formulation of the equations of linearly piezoelec-

tricity is provided by the following equations (see e.g. Eringen and Maugin, 1990)
force balance :
r 	 Tþ b ¼ 0
r 	D ¼ 0

�
on B; ð2aÞ

kinematic compatibility :
S ¼ SymðruÞ
E ¼ �ru

�
on B; ð2bÞ

essential boundary conditions :
u ¼ u0 on ouB;
u ¼ u0 on ouB;

�
ð2cÞ

natural boundary conditions :
Tn ¼ f0 on ofB;
Dn ¼ q0 on oqB;

�
ð2dÞ

constitutive equations :
S ¼ oF

oT

��
D
¼ sDTþ gtD

E ¼ � oF
oD

��
T
¼ �gTþ bTD

(
on B: ð2eÞ
In the equations above n denotes the external unit normal to the boundary oB, b is an external force per
unit volume applied on B (and eventually including inertial forces), rð	Þ denotes the spatial gradient with
respect to the reference position, r 	 ð	Þ the corresponding divergence operator, and Symð	Þ extracts the
symmetric part of a second order tensor. The constitutive equations are given in the so-called T–D form

through the free energy density function for linear piezoelectricity (see Ikeda, 1990)
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FðT;DÞ ¼ 1
2

sDT 	 T� 1
2

bTD 	Dþ gT 	D; ð3Þ
where sD is the mechanical compliance fourth order tensor for null electric displacement, g is the piezo-

electric coupling third order tensor and bT is a second order tensor modelling the inverse of the electric
permittivity for null mechanical stress. For a transversely isotropic piezoelectric material, the tensors

appearing in the constitutive equations are represented in the classical Voigt notation by means of the

following matrices
bT ¼
bT11 0 0

0 bT11 0

0 0 bT33

264
375;

sD ¼

sD11 sD12 sD13 0 0 0

sD12 sD11 sD13 0 0 0

sD13 sD13 sD33 0 0 0

0 0 0 sD44 0 0

0 0 0 0 sD44 0

0 0 0 0 0 2ðsD11 � sD12Þ

266666664

377777775;

g ¼
0 0 0 0 g15 0

0 0 0 g15 0 0

g31 g31 g33 0 0 0

24 35:

ð4Þ
2.2. Mixed variational formulation and reduced models

Let us define the affine space Vu of kinematically admissible displacement and strain tensors and the

space Vu of admissible electric potential and electric field vectors as follows:
Vu � fðu;SÞ : u ¼ u0 on ouB and S ¼ SymðruÞ on Bg; ð5aÞ

Vu � fðu;EÞ : u ¼ u0 on ouB and E ¼ �ru on Bg: ð5bÞ
Moreover, let us denote by VT and VD the vector spaces of symmetric stress tensor fields and of electric

displacements vector fields defined on B.
Let us consider the following functional (Hellinger–Prange–Reissner functional for piezoelectricity (see

Yang and Batra, 1995, Batra and Vidoli, 2002))
H½ðu;SÞ; ðu;EÞ;T;D� ¼
Z
B

ðFðT;DÞ � T 	 S�D 	 Eþ b 	 uÞdBþ
Z
ofB

f0 	 udS�
Z
oqB

q0udS ð6Þ
defined over the space
V ¼ Vu �Vu �VT �VD: ð7Þ
Under suitable regularity conditions, it can be verified that the solution to the problem of linear piezo-

electricity (2) is characterized by rendering stationary the Hellinger–Prange–Reissner functional (6) overV.
In particular, the equilibrium equations (2a) and the natural boundary conditions (2d) are found by

imposing vanishing first variations of functional (6) with respect to u and u, and the constitutive equations
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(2e) with respect to T and D. On the other hand, the compatibility conditions (2b) and the essential

boundary conditions (2c) are included in the definitions (5a) and (5b) of the functional spacesVu andVu.

In a model derived by a mixed variational formulation, it is often useful to distinguish between the

generalized deformations (S, E) obtained from the generalized displacements ðu;uÞ through the kinematic
compatibility (2b) and the generalized deformations ðS;EÞ obtained from the generalized stresses ðT;DÞ
though the constitutive equations (2e). Here and henceforth, the latter will be differentiated from the former

by a superscripted bar.

By following a direct approach, reduced models of a given refined one are deduced by assuming specific a

priori ‘‘types’’ of state fields. The accuracy of the description supplied by the reduced model relies on how

judiciously the aforementioned ‘‘types’’ are chosen. By following the mixed variational formulation above,

restrictive hypotheses on the generalized displacement (u;u), as well as on generalized stresses (T, D), are
straightforwardly included in the model. These hypotheses are introduced in the variational principle as
constraints on the space V on which the variations of the mixed functional must be taken. In particular,

when these constraints are linear, the constrained variational problem can be formulated as the search for

stationary points of the given functional on a linear subspaceW ofV. Alternatively, the constraints on the
admissible state fields can be imposed in the variational formulation by the Lagrange multiplier method.

The latter approach is particularly useful when the constraints naturally appear in an implicit form.

Moreover, the physical interpretation of the Lagrange multipliers furnishes a deeper understanding of the

problem.
3. Beam models

In this section, the three-dimensional mixed variational formulation is used to deduce beam models of

slender piezoelectric laminates by assuming specific hypotheses on the cross-sectional distribution of the

electromechanical state fields. In particular, by focusing on Euler–Bernoulli-like models, we investigate how

assumptions on cross-sectional strains and stresses influence the estimate of the beam constitutive coeffi-

cients. Indeed, standard beam models (see e.g. Crawley and de Luis, 1987; Crawley and Anderson, 1990;
Park et al., 1996) assume very drastic hypotheses about the distribution of transverse normal stress or

strain, which although working well for mono-layered beams, fail to predict some phenomena appearing

when different layers are interacting. After introducing basic definitions and key hypotheses (Section 3.1), a

beam model able to properly describe the basic features of cross-sectional deformation and normal stress

distributions is presented (Section 3.2). Moreover, in order to compare the proposed model (NSR model) to

standard approaches, the governing equations for models retaining standard assumptions on transverse

stress and strain are derived. Namely, in Sections 3.3 and 3.4, models assuming vanishing transverse normal

stress (NS model) and vanishing transverse deformation (ND model) are considered.

3.1. Definitions and hypotheses

3.1.1. Geometry and materials

Let us consider a multilayered straight-axis piezoelectric beam that is made by stacking up piezoelectric

and elastic layers. We decompose the reference domain B as the Cartesian product of the beam axisA and

the beam normal cross-section S. We denote by Si with i 2 I ¼ f1; . . . ; ng, the cross-sectional part
occupied by the ith layer and by n the total number of layers ([i2ISi ¼ S). Moreover, we denote by Ip

and Ie (Ip [Ie ¼ I) the set of indices i associated with the piezoelectric and elastic layers, respectively.
The following geometric and material properties are assumed: (i) the cross-sectional part Si is rectangular

and it is characterized by the width ai and thickness hi; (ii) each layer is materially homogeneous and either
orthotropic or transversely isotropic with respect to an axis oriented along its thickness (in particular the
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piezoelectric layers are polarized along the thickness); (iii) the upper and lower surfaces of the piezoelectric

layers are covered by a conductive layer with negligible mechanical properties, the lateral ones are bare; (iv)

the electrodes of the piezoelectric layers are parallel connected one to each other, and the whole beam is

electrically accessible only through two external electric terminals; for each piezoelectric layer, we define a
constant xi ¼ �1 defining the electric connection scheme between the electrodes of the ith layer and the
external terminals (xi ¼ 1 in-phase connection, xi ¼ �1 counter-phase connection).
A global reference frame C ¼ fo; e1; e2; e3g and n local reference frames CðiÞ ¼ foðiÞ � oþ �zie3; e1; e2; e3g

are fixed once for all, as sketched in Fig. 1. The coordinate representation in C of a generic point p 2 B is

denoted by ðx; y; zÞ. The local e3-coordinate in CðiÞ is denoted by zi ¼ z� �zi, where �zi is chosen in such a way
that
 Z

Si

zi dS ¼ 0: ð8Þ
3.1.2. Hypotheses

With the proposed mixed variational formulation, the reduced model generalized forces and the asso-
ciated equilibrium equations are determined by hypotheses for ðu;uÞ. On the other hand, hypotheses for (S,
D) affect the associated constitutive prescription. Here, in order to introduce the minimum number of

kinematical descriptors, an elementary Euler–Bernoulli-like electromechanical kinematics is adopted. At

the same time, the estimate of the associated constitutive prescriptions is improved by carefully selecting the

cross-sectional distribution of mechanical stress and electric displacement.

In order to derive efficient and accurate beam models of layered piezoelectric composites accounting for

the two-fold electromechanical coupling, we assume the following hypotheses for the distribution of the

electromechanical state fields over a beam cross-section.

(H1) Mechanical displacement. Basic equivalent-single-layer Euler–Bernoulli kinematics:
uðx; y; zÞ ¼ ðuðxÞ � zw0ðxÞÞe1 þ wðxÞe3; ð9Þ
where uðxÞ and wðxÞ are the beam axis displacements along e1 and e3, respectively.

(H2) Electric potential. Layerwise linear distribution of the electric potential and parallel interconnection

of the different layers
uðx; y; zÞ ¼ 1

2

�
þ xi

zi
hi

�
V ; ð10Þ
where V is the electric potential difference across the two electric terminals of the beam.
(H3) Mechanical stress. Layerwise linear distribution of plane-stress with vanishing shear term:
Tðx; y; zÞ ¼ ðr1;iðxÞ � zif1;iðxÞÞðe1 � e1Þ þ ðr2;iðxÞ � zif2;iðxÞÞðe2 � e2Þ; ð11Þ
where, layer by layer, constant (r’s) and linear (f’s) contributions to the beam stress in the axial (e1)
and transverse (e2) directions are defined.

(H4) Electric displacement. Layerwise constant distribution along the thickness direction:
Dðx; y; zÞ ¼ D3;iðxÞe3: ð12Þ
Particular attention is devoted to the discussion of the consequences (and the plausibility) of hypotheses

about the distribution of transverse normal stress and strain T22 ¼ Te2 	 e2 and S22 ¼ Se2 	 e2. Models
assuming the following three different further conditions on transverse normal stress T22 are analyzed and
compared.
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(C1) Null transverse stress resultants (NSR). The following conditions of vanishing stress resultants are im-

posed:
Ny ¼
R
S
Tðx; y; zÞe2 	 e2 dS ¼ 0;

My ¼
R
S
�zTðx; y; zÞe2 	 e2 dS ¼ 0:

(
ð13Þ
(C2) Null transverse stress (NS). The following condition of pointwise null transverse stress is enforced:
T22 ¼ Tðx; y; zÞe2 	 e2 ¼ 0: ð14Þ
(C3) Null transverse deformation (ND). We allow the stress fields of the type specified by (H3) to vary

freely. In this case the distribution of the transverse normal stress T22 will be determined in order
to retain condition of null transverse deformation implied by hypothesis (H1).

The different hypotheses on the electromechanical state fields and their influence on the properties of the

associated beam models deserve some comments.

(i) Notwithstanding the elementary Euler–Bernoulli kinematics in hypothesis (H1), the beam constitu-

tive prescriptions will include the influence of cross-sectional deformations and transversal interactions

between different layers through hypotheses on transverse stress (i.e. (H3) combined with one between

conditions (C1), (C2), and (C3)). Indeed, the influence of a sectional distension along the thickness is

implicitly taken into account by enforcing null normal stress T33. Furthermore, the influence of sectional
extensional deformations along e2 are introduced by constraining the admissible transverse normal stress

T22.
(ii) The linear distribution of the electric potential assumed in (H2) specifies the electric kinematics only

in terms of the potential difference V . However, because of hypothesis (H4), the beam constitutive equa-

tions are derived by assuming a layerwise constant electric displacement. As extensively detailed in Sze et al.

(in press), the hypothesis of constant electric displacement is the best suited for fitting the three-dimensional

distribution of the electric state fields without introducing additional electric degrees of freedom. In this

way, as can be checked by writing down the constitutive equation for the electric potential, a through-the-

thickness linear contribution to the electric field (corresponding to a quadratic electric potential) is

implicitly associated with flexural strains. One of the advantage of the proposed mixed variational for-
mulation is to straightforwardly include in the model the hypothesis of layerwise constant electric dis-

placement.

(iii) Hypotheses (H3) and (H4) introduce in the beam constitutive equations the effects of cross-sectional

deformations and quadratic distribution of the electric potential. However, the electrical and mechanical

shear-like effects associated with the axial variations of cross-sectional displacements and electric potential

are neglected. In other words: the piezoelectric laminate is modelled as beam axis on which orthogonal

cross-sections are positioned; for given axial displacements these cross-sections, being constrained to re-

main orthogonal to the axis, are left free to deform in their own plane so as to fit the conditions on the
distribution of transverse stress; moreover, for a given potential difference V , the electric potential inside the
piezoelectric layers is left free to vary along the thickness in order to satisfy the condition (H4) of constant

electric displacement; however, since all the shear-like electrical and mechanical effects are discarded, all

shear interactions between two adjacent beam cross-sections are neglected and only those exerted through

axial normal stress are retained.

(iv) Conditions (C1) and (C2) restrict the admissible stress distributions over a section. Condition (C2)

implies (C1). In the case of a homogeneous single-layer beam, given hypothesis (H3), also the inverse is true

and the two conditions are equivalent. This is not the case of a multi-layered beam. In the following, we
refer to the NS condition (C1) also as to the strong condition on transverse stress and to the NSR condition
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(C2) also as the weak condition on transverse stress. The weak condition can be interpreted as an integral

version of the force balance in the transverse direction. As it will be shown in the following, in a multi-

layered beam transverse interactions between different layers are present and the transverse normal stress is

not vanishing pointwise. In this case, the strong condition (C2) is not physically grounded, while the
weakened version (C3) is still legitimized by global balance laws.

In the following, the three beam models accounting for assumption (H1)–(H4) and corresponding to

conditions (C1), (C2) or (C3) are deduced by a mixed variational formulation based on the Hellinger–

Prange–Reissner functional (6). The additional conditions (13) and (14) on transverse normal stress

are imposed on the variational problem by the Lagrange multipliers method. The following external

actions are included in the description: (i) a force distribution on the beam bases having a force resul-

tant F ¼ Ne1 þ T e3 and a moment resultant M ¼ �Me2; (ii) a body force per unit volume bðx; y; zÞ ¼
bðx; y; zÞe3; (iii) either a voltage V or a total charge Q imposed on the electric terminal of the set of piezo-
electric layers.
3.1.3. Beam state fields

When hypotheses (H1) and (H3) are assumed, the three-dimensional distribution of the mechanical

displacement and the electric field is given as function of the following axial fields
U ¼ ½ u w �; ð15aÞ

V ¼ ½V �: ð15bÞ
Moreover, the strain tensor and the electric fields in the ith layer are in the form
Sðx; y; zÞ ¼ ðe1;iðxÞ � zij1;iðxÞÞe1 � e1; ð16aÞ

Eðx; y; zÞ ¼ E3;ie3; ð16bÞ
where
e1;iðxÞ ¼ u0ðxÞ � �ziw00ðxÞ; j1;iðxÞ ¼ w00ðxÞ ð17Þ

and
E3;i ¼ �xi

hi
V : ð18Þ
Hence, the 3D distribution of the mechanical deformation and electric field is specified by the axial fields

(here and henceforth the explicit dependence on the space variables is omitted)
S ¼ fe1;i; j1;igni¼1; E ¼ fE3;igni¼1: ð19Þ

We say that the fields ðU; SÞ are compatible if they are related through the compatibility relations (17) and if

the displacement u induced by U through (9) verifies the geometric boundary condition u ¼ u0 on ouB. In
the same way, we say that ðV;EÞ are compatible if they are related through the compatibility relations (18)

and if the electric potential u induced by V through (10) verifies the geometric boundary condition u ¼ u0
on ouB. In what follows, we denote byWu the functional space of compatible mechanical kinematical fields

ðU; SÞ and by Wu that of compatible electric kinematical fields ðV;EÞ.
By the assumed distribution for the mechanical stress and the electric displacement, the beam dynamic

state is specified through the generalized stress descriptors
T ¼ fr ; f ; r ; f gn ; ð20Þ
1;i 1;i 2;i 2;i i¼1
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D ¼ fD3;igni¼1: ð21Þ

Let us defineWT as the functional space of the suitably regular beam stress descriptors T and WD as the

functional space of the beam electric displacement descriptors D. Hence, the fields in the space

W � Wu �Wu �WT �WD characterize the electromechanical state of the reduced beam model.

The definitions above will be extensively used for the formulation of the variational problem associated

with the different beam models.
3.2. Model with null transverse stress resultants (NSR model)

The variational problem for the beam model corresponding to hypotheses (H1)–(H4) and to the NSR

condition on transverse stress is formulated by rewriting the reduced beam version of the Hellinger–

Prange–Reissner functional (6) by taking into account hypotheses (H1)–(H4) and successively by enforcing

the weak conditions (13) on transverse stresses by the Lagrange multiplier method. Associated beam

balance and constitutive equations are found by looking for the stationary point of the so obtained beam
functional. In particular, the Euler equations found by varying mechanical and electrical kinematical fields

(U;V) furnish mechanical and electrical equilibrium equations; those found by varying mechanical and

electrical dynamic fields (T;D) furnish mechanical and electrical constitutive equations. The NSR conditions
are recovered by imposing the beam functional to be stationary with respect to variations of the introduced

Lagrange multipliers.
3.2.1. Variational formulation

Let us define the following beam model free energy
Fbeam ¼
Z
S

FðT;DÞdS: ð22Þ
By making use of hypotheses (H1)–(H4) it becomes
FbeamðT;DÞ ¼
X
i2I

1

2
ðAisab;ira;irb;i þ Jisabfa;ifb;iÞ þ

X
i2Ip

Aig3a;ira;iD3;i �
X
i2Ip

1

2
bT33;iAiD

2
3;i; ð23Þ
where
Ai ¼
Z
S

dS ¼ aihi; Ji ¼
Z
S

z2i dS ¼ aih3i =12 ð24Þ
and an implicit summation over a, b 2 f1; 2g is implied. The constitutive coefficients sab;i, g3a;i, and bT33;i are
defined with the standard notation for piezoelectric materials except for dropping the superscript D (null
electric displacement) on s and adding a subscript i to distinguish the constitutive properties of different
layers. Due to material symmetries g32;i ¼ g31;i, s12;i ¼ s21;i, s11;i ¼ s22;i.
Hence, by substituting hypotheses (H1)–(H4), the Hellinger–Prange–Reissner functional H defined in

Eq. (6) becomes,
Hbeam½ðU; SÞ; ðV;EÞ;T;D� ¼
Z
A

FbeamðT;DÞdxþ
X
i2Ip

Z
A

AiD3;iE3;i dx�
X
i2I

Z
A

ðAir1;ie1;i þ Jif1;ij1;iÞdx

þ
Z
A

ðbNuþ bMw0 þ bTwÞdxþ ½NuþMw0 þ Tw�oA � QV ; ð25Þ
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where
bN ¼
Z
ofS

f0 	 e1 d‘þ
Z
S

b 	 e1 dS; N ¼
Z
S

f0 	 e1 dS;

bM ¼ �
Z
ofS

zf0 	 e1 d‘�
Z
S

ðzb 	 e1ÞdS; M ¼ �
Z
S

zf0 	 e1 dS;

bT ¼
Z
ofS

f0 	 e3 d‘þ
Z
S

b 	 e3 dS; T ¼
Z
S

f0 	 edS;

ð26Þ
and Q is the total charge imposed on the two electric terminals of the multilayered beam. The reduced beam
functional (25) is defined over the space W � Wu �Wu �WT �WD.
The variational formulation is completed by imposing the weak conditions (13) on transverse stress by

the Lagrange multiplier method. Hence, the following modified functional is introduced
~Hbeam ¼ Hbeam þ ~HðKÞ
beam ð27Þ
with
~HðKÞ
beam ¼ �

Z
A

kðxÞ
Z
S

Tðx; y; zÞe2 	 e2 dS
� �

dx�
Z
A

lðxÞ
Z
S

�
� zTðx; y; zÞe2 	 e2 dS

�
dx: ð28Þ
If the following generalized transverse strains are defined
e2;i ¼ kðxÞ � �zilðxÞ;
j2;i ¼ lðxÞ;

�
ð29Þ
then ~HðKÞ
beam can be rewritten as
~HðKÞ
beam ¼ �

Z
A

X
i2I

ðAie2;ir2;i þ Jij2;if2;iÞdx: ð30Þ
Finally, the constrained variational problem associated with the NSR model consists of looking for the

stationary point of the modified functional ~Hbeam over the extended space
fW � Wu �Wu �WT �WD �WK; ð31Þ
where WK is the space of admissible Lagrange multipliers K ¼ fk; lg.
The transverse strains ðe2;i;j2;iÞ are the analog of ðe1;i; j1;iÞ in the width direction and they can be re-

garded as the constant and linear part of the deformation along ðe2 � e2Þ. Similarly, the Lagrange multi-
pliers ðk; lÞ are the analog of ðu0;w00Þ in the transverse direction. They are associated with the extensional (k)
and flexural (l) sectional deformation in the transverse direction, exactly as ðu0;w00Þ are in the axial
direction.
3.2.2. Balance equations

The balance equations and the natural boundary conditions are derived by imposing that the first

variation of the functional (27) in Wu �Wu is null. Hence, the following balance equations are found:
bN þ N 0
x ¼ 0;

b0M � bT þM 00
x ¼ 0;R

A
qdx� Q ¼ 0;

8><>: ð32Þ
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where the following force resultants have been defined
Nx ¼
X
i2I

Z
Si

T 	 ðe1 � e1ÞdS ¼
X
i2I

Air1;i ð33aÞ

Mx ¼
X
i2I

Z
Si

�zT 	 ðe1 � e1ÞdS ¼ �
X
i2I

�ziAir1;i þ
X
i2I

Jif1;i; ð33bÞ

q ¼ �
X
i2Ip

xiaiD3;i: ð33cÞ
The natural boundary conditions are derived by imposing that the following conditions are satisfied for all

the admissible variations du and dw of u and w in Wu
½ðNx � NÞdu�oA ¼ 0;
½ðMx �MÞdw0 þ ðT þM 0

x þ bMÞdw�oA ¼ 0:

(
ð34Þ
As expected because of the assumed kinematics, the balance equations above correspond to those of a

standard Euler–Bernoulli beam model.

3.2.3. Constitutive equations

Local constitutive equations. Local constitutive equation valid layer by layer are found by imposing that

the first variation of the functional (27) with respect to ðT;DÞ is null. They are given by
piezoelectric layers
i2Ip

sDabrb;i þ g3aD3;i ¼ ea;i;

sDabfb;i ¼ ja;i;

�g3ara;i þ bT33D3;i ¼ E
ðlÞ
3;i ;

8>><>>: elastic layers
i2Ie

sabrb;i ¼ ea;i;
sabfb;i ¼ ja;i:

�
ð35Þ
The constitutive equations above can be inverted and rewritten in the form
piezoelectric layers
i2Ip

ra;i ¼ ~cEabeb;i � ~e3bE3;i;

fa;i ¼ ~cDabjb;i;

D3;i ¼ ~e3beb;i þ ~�S33E3;i

8>><>>: elastic layers
i2Ie

ra;i ¼ ~cabeb;i;
fb;i ¼ ~cabjb;i:

(
ð36Þ
Explicit expressions for the new constitutive coefficients are given in Appendix A.1. As it can be easily
checked, their expressions correspond to those of the constitutive coefficient of piezoelectric and elastic

materials in which the normal stress along e3 (namely, T33) is imposed to be null and the electric dis-
placement constant along the thickness. This is consequence of assumption (H3) where T33 ¼ Te3 	 e3 ¼ 0
and assumption (H4) where oD=oz ¼ 0.

Conditions on transverse stresses. The NSR conditions on transverse stresses given by Eqs. (13) are re-

trieved by imposing that the first variation of the beam functional (27) with respect to the Lagrange

multipliers ðk; lÞ is null. By introducing the following force resultants
Ny ¼
X
i2I

Air2;i; My ¼
X
i2I

Jif2;i � �ziAir2;i; ð37Þ
they appear in the form
Ny ¼ 0;
M ¼ 0:

�
ð38Þ
y
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Global constitutive equations. Let us collect the force resultants in the axial and transverse direction in the

following vectors:
Rx ¼
Nx
Mx

� �
; Ry ¼

Ny
My

� �
: ð39Þ
Moreover, let us introduce the vectors collecting the axial fields representing beam deformations in the two

directions as follows
dx ¼
u0

w00

� �
; dy ¼

k
l

� �
¼ K; ð40Þ
where the Lagrange multipliers have been explicitly associated with transversal extension (k) and flexion (l)
of the beam cross-section. Hence, by substituting the local constitutive equations (36) and the kinematic

compatibility equations (16), (17), (18) in the definitions of the force resultants (33)–(37), the global beam
constitutive equations in the following form are found:
Rx
Ry
q

24 35 ¼
Kxx Kxy �etdV
Kxy Kxx �etdV
edV edV �qV

24 35 dx
dy
V

24 35; ð41Þ
where
Kxx ¼
kNu �kNw
�kNw kMw

� �
; Kxy ¼

kNk �kNl

�kNl kMl

� �
; edV ¼ �eNV eMV½ �: ð42Þ
Explicit expressions for the constitutive constants appearing above in terms of three-dimensional material

and constitutive properties are reported in Appendix A.2.

The conditions on transverse stresses (38) impose that
Ry ¼ Kxydx þ Kxxdy � etdV V ¼ 0: ð43Þ
Hence, the following expressions for the transverse deformations are found
dy ¼ �K�1
xx Kxydx þ K�1

xx e
t
dV V : ð44Þ
Finally, the following constrained global constitutive equations are obtained by substituting the expressions

(44) for the transverse deformations in the constitutive equations (41)
Rx

q

� �
¼

KðNSRÞ
xx �ðeðNSRÞdV Þt

eðNSRÞdV �
tðNSRÞ
dV

" #
dx

V

� �
; ð45Þ
where
KðNSRÞ
xx ¼ Kxx � KxyK�1

xx Kxy ;

eðNSRÞdV ¼ edV � edV K�1
xx Kxy ;

�
ðNSRÞ
qV ¼ �qV þ edV K�1

xx e
t
dV :

8>><>>: ð46Þ
If the different layers are symmetrically disposed with respect to a given plane or if cE12=c
E
11 ¼ c12=c11, it is

possible to choose the position of the e2 axis is such a way that
kNw ¼ kNl ¼ 0; ð47Þ
and the matrices Kxx and Kxy are diagonal. Therefore, the constrained beam constitutive equations (45) are
written as
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Nx
Mx

q

264
375 ¼

kðNSRÞNu 0 �eðNSRÞNV

0 kðNSRÞMw eðNSRÞMV

eðNSRÞNV �eðNSRÞMV �
ðNSRÞ
qV

2664
3775 u0

w00

V

264
375; ð48Þ
where the constitutive coefficients are given by the following simple expressions:
kðNSRÞNu ¼ kNuð1� k2Nk=k
2
NuÞ; ð49aÞ

kðNSRÞMw ¼ kMwð1� k2Ml=k
2
MwÞ; ð49bÞ

eðNSRÞNV ¼ eNV ð1� kNk=kNuÞ; ð49cÞ

eðNSRÞMV ¼ eMV ð1� kMl=kMwÞ; ð49dÞ

�
ðNSRÞ
qV ¼ �qV ð1þ e2NV =ðkNu�qV Þ þ e2MV =ðkMw�qV ÞÞ: ð49eÞ
Moreover, the relations (44) expressing the cross-sectional transverse deformations in terms of axial ones

and applied electric potential are written explicitly as
dy ¼
k
l

� �
¼ �kNk=kNu 0 �eNV =kNu

0 �kMl=kMw eMw=kMw

� � u0

w00

V

24 35: ð50Þ
The expressions above for cross-sectional transverse extension and bending show how, in order to enforce

the NSR conditions (38), the constitutive equations of the NSR model (45) account for cross-sectional

deformations. This feature is provided by the mixed variational formulation, where the beam constitutive

behavior is prescribed through the hypotheses on generalized stress descriptors. In this way, despite the
assumed elementary Euler–Bernoulli kinematics, beam cross-sectional deformations are implicitly allowed

for by suitably restricting admissible stress states.

3.3. Model with pointwise null transverse stress (NS model)

3.3.1. Variational formulation

The strong conditions (14) on transverse stress naturally restrict the space of admissible stress to the

subspace cWT ofWT made of the generalized stress T characterized by r2;i ¼ f2;i ¼ 0. Hence, the variational
problem in this case could be stated as finding the stationary point of (25) over Wu �Wu � cWT �WD.

However, the NS conditions (14) are imposed here by the Lagrange multiplier method, in order to

emphasize analogies and differences with respect to the model assuming the NSR conditions (13). Hence,

the following modified functional is introduced
bHbeam ¼ Hbeam þ bHðKÞ
beam; ð51Þ
where, in view of hypothesis (H3), the additional term enforcing the NS condition (14) is given by
bHðKÞ
beam ¼ �

Z
A

X
i2I

ðkiðxÞr2;iðxÞ þ liðxÞf2;iðxÞÞ: ð52Þ
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By introducing the functional space of admissible Lagrange multipliers cWK ¼ fk1; l1; . . . ; kn; lng, the
variational problem associated with the NS model is finally formulated as finding the stationary set of the

functional bHbeam over
cW � Wu �Wu �WT �WD � cWK: ð53Þ
3.3.2. Balance equations

The equilibrium equations and the natural boundary conditions are found by taking the variation of the
functional (51) in Wu �Wu. As it can be easily checked, they are the same of those found for the model

assuming the weak conditions on transverse stress (Eqs. (32) and (34)).

3.3.3. Constitutive equations

Local constitutive equations. By taking the variation of the functional (51) in WD �WT, local consti-

tutive equations in the form (35) and (36) are found also in this case; however the following different

definitions for transverse deformations in terms of Lagrange multipliers holds:
e2;i ¼ ki;
j2;i ¼ li:

�
ð54Þ
In this case, two Lagrange multipliers for each layer are defined. They can be interpreted as transverse
cross-sectional extension and bending of each layer.

Condition on transverse stresses. The constraints on transverse stresses (14) are retrieved by imposing that

the variations of the functional (51) with respect to fki; lig
n
1¼1 are null. They are
r2;i ¼ 0;
f2;i ¼ 0:

�
ð55Þ
These conditions, being local, can be imposed directly on the local constitutive equation (35) and solved for

the Lagrange multipliers fki; lig
n
1¼1. In this way, the following constrained local constitutive equations are

found
piezoelectric layers
i2Ip

r1;i ¼ ĉE11e1;i � ê31E3;i;

f1;i ¼ ĉD11j1;i;

D3;i ¼ ê31e1;i þ �̂S33E3;i;

8>><>>: elastic layers
i2Ie

r1;i ¼ ĉ11e1;i;

f1;i ¼ ĉ11j1;i;

(
ð56Þ
where the explicit expressions of the constitutive coefficients in terms of the three-dimensional material and

geometric properties are given in Appendix A.1. As it can be easily checked, the constitutive constants with

a superimposed hat correspond to those for piezoelectric and elastic materials under a uniaxial stress state

in the e1-direction (i.e. for T22 ¼ T33 ¼ 0). Moreover, the following expressions for the transverse sectional
deformations of each layer are found:
piezoelectric layers
i2Ip

e2;i ¼ �~cE12
~cE11

e1;i þ
~e31
~cE11

E3;i;

j2;i ¼ �~cD12
~cD11

j1;i;

8>>><>>>: elastic layers
i2Ie

e2;i ¼ �~c12
~c11

e1;i;

j2;i ¼ �~c12
~c11

j1;i:

8>><>>: ð57Þ
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The main difference with respect to the model in which weak conditions on transverse stress are enforced,

consists of neglecting the interactions between different layers in the transverse direction. Indeed, in this

case, each layer is left free to extend and bend in the transversal direction independently of the other ones.

Global constitutive equations. By substituting the local constitutive equations (56) in the stress resultant
definitions, global constrained constitutive equations in the following form are found
Nx
Mx

q

264
375 ¼

kðNSÞNu kðNSÞNw �eðNSÞNV

kðNSÞNw kðNSÞMw eðNSÞMV

eðNSÞNV �eðNSÞMV �
ðNSÞ
qV

2664
3775 u0

w00

V

264
375: ð58Þ
Explicit expressions for the constitutive coefficients above are given in Appendix A.2.

3.4. Model with null transverse strain (ND model)

3.4.1. Variational formulation

The condition of null transverse deformation is satisfied when no further hypotheses of transverse stress
distribution are imposed. The corresponding variational formulation of the problem consists of looking for

the stationary set of the Hellinger–Prange–Reissner functional (25) over the space W.

The equilibrium equations, the natural boundary conditions, and the constitutive relations are found by

imposing the variations of (25) inWu �Wu andWT �WD equal to zero. The only difference with respect

to the models assuming further conditions on transverse normal stress is that the transverse deformations

ðe2;i; j2;iÞ appearing in the constitutive equations in the form (35) are null in each layer. Hence, the cor-

responding global constitutive relations are given directly by (41) for dy ¼ 0: They are in the form
Nx
Mx

q

264
375 ¼

kðNDÞ
Nu �kðNDÞ

Nw �eðNDÞ
NV

�kðNDÞ
Nw kðNDÞ

Mw eðNDÞ
MV

eðNDÞ
NV �eðNDÞ

MV �
ðNDÞ
qV

2664
3775 u0

w00

V

264
375 ð59Þ
with the constitutive constants given in Appendix A.2 (Eqs. (A.11)).
4. Results and comments

In this section, we discuss the main differences between the proposed NSR model and the standard NS

and ND models by focusing on the following points:

(1) the comparison of the estimates of the beam mechanical, electrical, and coupling constitutive coeffi-

cients as functions of the thickness ratio between the piezoelectric and elastic layers;

(2) the comparison of the through-the-thickness distribution of the 3D state fields associated with a given

deformation state of the beam model (which is specified by assigning ðu0;w00; V Þ).

To this end, two particular configurations of piezoelectric laminated beams are considered:

(i) a sandwich three-layered beam composed of a central elastic layer on which two identical piezoelectric
layers are symmetrically bonded (see Fig. 2); in particular, both of the configurations with in-phase and

counter-phase electric connections between the piezoelectric layers are examined (extensional-electric

coupling and flexural-electric coupling, respectively).

(ii) a two-layered beam composed of a piezoelectric and an elastic layer (see Fig. 3).
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Fig. 2. Three-layered sandwich piezoelectric beam: cross-section.

C. Maurini et al. / International Journal of Solids and Structures 41 (2004) 4473–4502 4489
In the following, we assume that the different layers all have the same width a. We denote by hp the
thickness of the piezoelectric layers, by hb the thickness of the elastic layers, and we introduce the thickness
ratio
Table

Numer

Elas

Piez
g ¼ hb
hp

: ð60Þ
Elastic layers made of aluminum, and piezoelectric layers made of the piezoelectric ceramic PZT-5H are

considered. The corresponding numerical values of the relevant material properties are reported in Table 1.

The following dimensionless parameters are introduced:
~b11 ¼
~c11
~cE11

; ~b12 ¼
~c12
~cE12

; b̂11 ¼
ĉ11
ĉE11

;

~c11 ¼

ffiffiffiffiffiffiffiffiffiffiffi
~e231

~eS33~c
E
11

s
; ~c12 ¼

ffiffiffiffiffiffiffiffiffiffiffi
~e231

~eS33~c
E
12

s
; ĉ11 ¼

ffiffiffiffiffiffiffiffiffiffiffi
ê231

êS33ĉ
E
11

s
; ~m ¼ ~cE12

~cE11
:

ð61Þ
They represent the stiffness ratios between the elastic and piezoelectric materials (~b11; ~b12; b̂11), the dimen-
sionless coupling parameters (~c11;~c12), and the piezoelectric Poisson coefficient (~m).
1

ical values of the relevant piezoelectric and elastic constitutive coefficients for PZT 5-H and aluminum

s11 (m2 N�1) s12 (m2 N�1) d31 (mV�1) bT33 (F
�1 m)

tic layer (aluminum) 14.5· 10�12 )4.78· 10�12 – –

oelectric layer (PZT-5H) 16.1· 10�12 )4.57· 10�12 )320· 10�12 2.98· 107



4490 C. Maurini et al. / International Journal of Solids and Structures 41 (2004) 4473–4502
4.1. Constitutive coefficients

We begin by comparing the beam constitutive coefficients relating the generalized beam stress ðNx;Mx; qÞ
to the beam generalized deformations ðu0;w00; V Þ as obtained by the ND, NS and NSR models. In par-
ticular, for specific cross-sectional configurations (the in-phase and counter-phase connected sandwich

beams and the two layered beam), the influence of the different hypotheses on transverse stress on the beam

constitutive behavior as a function of the thickness ratio g is discussed.

4.1.1. Three-layered sandwich beam

In this case (see Fig. 2), the layer configuration is symmetric, beam extensional and flexural modes are

mechanically uncoupled (kðNDÞ
Nw ¼ kðNDÞ

Nl ¼ 0), and the beam constitutive equations can be evaluated from

reduced expressions of the type (49). For the ND model, the following constitutive parameters are found

(see expressions in Appendix A.2):
Table

Consti

kNu=

eNV =

�qv=

Ratios
kðNDÞ
Nu ¼ ~cE11ahpxgð~b11Þ; ð62aÞ

kðNDÞ
Mw ¼

~cE11ah
3
p

12
vgð~b11;~c11Þ; ð62bÞ

eðNDÞ
NV ¼ ðx1 þ x2Þa~e31; ð62cÞ

eðNDÞ
MV ¼ ðx1 � x2Þa~e31hpð1þ gÞ=2; ð62dÞ

�
ðNDÞ
qV ¼ 2a

hp
~�S33; ð62eÞ
where the following functions giving the dependence on the thickness ratio g are defined:
xgðbÞ ¼ 2þ gb; vgðb; cÞ ¼ 2ð1þ c2Þ þ 6ð1þ gÞ2 þ g3b: ð63Þ

For in-phase connected piezoelectric layers ðx1 ¼ x2 ¼ 1Þ, the potential difference between the electric
terminals of the piezoelectric transducers is coupled only to the beam extensional mode. On the other hand,

for counter-phase connected piezoelectric layers ðx1 ¼ �x2 ¼ 1Þ, the piezoelectric coupling involves only
the beam flexural mode.

The NSR and NS models furnish different estimates of the electromechanical constitutive properties of
the layered beam. We detail in Tables 2 and 3 the corresponding expressions for the mechanical extensional

and flexural stiffnesses (kNu and kMw), coupling coefficients (eNV ; eMV ), and capacitance per unit length �qV .
These quantities are reported as ratio to those of the ND model. The cases of in-phase and counter-phase

electrical connections are reported separately. By assuming the numerical values of the constitutive
2

tutive coefficients of a sandwich beam with in-phase parallel-connected piezoelectric layers

NS model NSR model

kðNDÞ
Nu ð1� ~m2Þ-gðb̂11Þ

-gð~b11Þ
1� ~m2

-2
gð~b12Þ

-2
gð~b11Þ

eðNDÞ
NV 1� ~m 1� ~m

-gð~b12Þ
-gð~b11Þ

�ðNDÞ
qv 1þ ~c211 1þ 2~c211

-gðb11Þ

between the constitutive coefficients of the NS and NSR models and those of the ND model are reported.



Table 3

Constitutive coefficients of a sandwich beam with counter-phase parallel-connected piezoelectric layers

NS model NSR model

kMw=k
ðNDÞ
Mw ð1� ~m2Þ

vgðb̂11; ĉ11Þ
vgð~b11;~c11Þ

1� ~m2
v2gð~b12;~c12Þ
v2gð~b11;~c11Þ

eMV =e
ðNDÞ
MV 1� ~m 1� ~m

vgð~b12;~c12Þ
vgð~b11;~c11Þ

�qv=�
ðNDÞ
qv 1þ ~c211 1þ 6~c

2
11ð1þ 1=gÞ

2

vgð~b11;~c11Þ

Ratios between the constitutive coefficients of the NS and NSR models and those of the ND model are reported.
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Fig. 4. Beam constitutive coefficients for the in-phase (a) and counter-phase (b) connected three-layered piezoelectric beam as a

function of the thickness ratio g ¼ hb=hp. The continuous lines refer to the NSR model, the dashed lines to the NS model. The

constitutive coefficients are reported as ratios with respect to those estimated by the ND model.
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coefficients in Table 1, the same quantities are plotted in Fig. 4 as a function of the thickness ratio g for a
fixed thickness of the piezoelectric layer.

From expressions (62), Tables 2 and 3, and Fig. 4, we draw the following conclusions regarding the

constitutive coefficients estimated by the different models.

Electric capacitance per unit length (eqV ). Both for the in-phase and counter-phase electric connection
between the two piezoelectric layers, the predicted value of eqV strongly depends on the assumed model. In
particular, once the thickness hp of the piezoelectric layers is fixed, eqV is independent of the thickness ratio g
between the piezoelectric and elastic layers in the ND and NS models. In the ND model, eqV is given by the
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electric capacitance for null transverse strain, and in the NS model by that for null transverse stress; the

ratio between these two values depends only on the coupling coefficient ~c11 (see Table 2). On the other hand,
in the NSR model, the electric capacitance per unit length varies with g: for the in-phase electric connection
it is equal to the electric capacitance for null transverse strain for thick elastic substrates (g ! 1); it in-
creases with g going towards the capacitance for null transverse stress for very thin elastic substrates
(g ! 0). This behavior has a physical justification: for g ! 1 the very thick elastic substrate behaves as a

rigid element and the piezoelectric layers bonded on it cannot deform in the transverse direction; for g ! 0,

the elastic layer becomes negligible and the two in-phase connected piezoelectric layers can freely deform in

the transverse direction. For g ! 1 the same considerations also hold for the counter-phase electric

connection, while a different phenomenon must be considered for g ! 0. In this case, when the thickness of

the elastic layer is negligible, the two counter-phase connected piezoelectric layers are in the so-called bi-

morph configuration: when an electric potential is applied, one tends to extend, the other to shrink. As a
consequence of the bonding condition, transverse interactions between the two layers arise and transverse

stresses are different from zero also for g ! 0. For this reason, when g ! 0 the electric capacitance per unit

length goes toward a value different from that of the NS model.

Mechanical stiffness (kNu; kMw). Both for in-phase and counter-phase electric connections, the mechanical
stiffnesses estimated by the NS and NSR are remarkably different from that given by the ND model. As

evident from relations in Tables 2 and 3, their ratio mainly depends on the value of the Poisson ratio m. This
is a well known effect: while in the NS and NSR models the beam cross section is left free to deform in its

plane, in the ND model it is constrained to be rigid. As a consequence, the ND model overestimates the
extensional and flexural stiffnesses when the beam’s lateral boundary is stress-free. On the contrary, for the

assumed material properties of the different layers, the estimates provided by the NSR and NS models are

similar, although the NS model neglects any interaction between different layers in the transverse direction

(each layer is left free to deform independently from the other ones). This may be the reason why the NS

condition is usually accepted for modelling mechanical laminates.

Coupling coefficient (eNV ; eMV ). For a given thickness of the piezoelectric layers, the coupling coefficients
predicted by ND and NS are independent of the thickness of the elastic layer. On the other hand, the NSR

model accounts for a dependence on the thickness ratio g. Moreover, the ND model sensibly overestimates
(�+30%) the coupling coefficient in comparison to the NS and NSR models. To give an illustrative expli-
cation of the underlying phenomena, let us consider the case of the in-phase connected beam and let us write

the eNV coefficient as the induced electric charge per unit length for a given axis extension u0 ¼ S11, under the
condition of null axis bending and null applied voltage. For a plane-stress state (T33 ¼ 0), we find
eNV ¼ q
S11

����
w00 ¼V¼0

¼ 2a~e31ð1þ S22=S11Þ: ð64Þ
In the ND model, since SðNDÞ
22 is forced to be zero, the coupling coefficient is given by
eðNDÞ
NV ¼ 2a~e31:
On the other hand, in the NS model, since the transversal stress T22 is assumed to be zero, we find
SðNSÞ22 ¼ �~mES11; eðNSÞNV ¼ 2a~e31ð1� ~mEÞ;

where ~mE is the in-plane Poisson coefficient of the piezoelectric material for T33 ¼ 0 and E3 ¼ 0. Hence, for
positive Poisson coefficients, eðNSÞNV < eðNDÞ

NV : In the NSR case, the transverse deformations of the piezoelectric
layers are influenced also by the deformation of the elastic layer: if the Poisson ratio ~m of the elastic layer is
greater that the one of the piezoelectric layer (as in the numerical case we considered), then the elastic layer

will induce a stronger shrinking for a given axial extension. Hence, for ~mE < ~m,
SðNSRÞ22 < SðNSÞ22 ; eðNSRÞNV < eðNSÞNV :
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On the contrary, if ~m < ~mE then eðNSRÞNV > eðNSÞNV . The relations above can be verified also by analyzing the ratio

between the analytical expressions furnished in Table 2. Such a difference between the coupling coefficient

of the NSR and NS model is small because exclusively due to the difference in the Poisson ratio of different

layers, which is usually small. In the case of counter-phase connected piezoelectric layers, the underlying
phenomena are essentially the same, but some further complications arise because of the though-the-

thickness linear contributions to the stress and strain which are associated with the beam flexion. As for

the equivalent capacitance, for g ¼ 0 also the coupling coefficients of the in-phase connected beam given by
the NS model and the NSR model coincide. Indeed, in this case the beam is completely equivalent to a

single layer piezoelectric beam and the two conditions (NS) and (NSR) are equivalent. This is not the case

for the counter-phase connection. In this case, when g ¼ 0, the sandwich beam reduces to a bimorph

piezoelectric pair, where transverse interactions between different layers are important.

4.1.2. Two-layered beam

For the asymmetric layer configuration, the potential difference between the electrodes of the piezo-

electric layers is intrinsically coupled both to the beam extension and bending, which, in general, are also

mechanically coupled to each other. We report in the following table the constitutive coefficients appearing

in the unconstrained beam constitutive equations (41), evaluated in a reference frame positioned as in

Fig. 3.
kNu ¼ kðNDÞ
Nu ¼ ahp~cE11ð1þ g~b11Þ;

kNw ¼ kðNDÞ
Nw ¼ ah2p~c

E
11

ð1þ gÞ
2

;

kMw ¼ kðNDÞ
Mw ¼ ~cE11J2ð3ð1þ gÞ2 þ 1þ ~c11 þ g3~b11Þ;

eNV ¼ eðNDÞ
NV ¼ a~e31;

�qV ¼ �
ðNDÞ
qV ¼ a~�S33=hp;

eMV ¼ eðNDÞ
MV ¼ a~e31�z2;

kNk ¼ A2~cE12 1

 
þ A1~c12
A2~cE12

!
;

kNl ¼ ah2p~c
E
12

ð1þ gÞ
2

;

kMl ¼ ~cE12J2ð3ð1þ gÞ2 þ 1þ ~c11 þ g3~b12Þ:

ð65Þ
As the explicit evaluation of the constitutive coefficients appearing in Eq. (48) becomes rather cum-

bersome due to the presence of mixed extension and bending stiffness, we limit ourselves to showing some

plots for these coefficients obtained in the case of the material properties specified by Table 1. In Fig. 5, the

ratio between the constitutive coefficients of the NS and NSR models to those of the ND model are re-

ported. In this case, the one related to the mechanical coupling between extension and bending (kNw) is not
vanishing. Comments similar to those detailed for the three-layered beam hold also in this case, and an
analogous interpretation of the dependence on the thickness ratio between the piezoelectric and the elastic

layer can be drawn.

4.2. Comparison of 3D fields underlying the ND, NS and NSR models

The kinematical state of the three beam models above (ND, NS and NSR) is specified through the fields
(u;w; V ). They determine beam axis extension, bending, and electric potential, respectively. For a given
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Fig. 5. Beam constitutive coefficients for two-layered piezoelectric beam as a function of the thickness ratio g ¼ hb=hp. The continuous
lines refer to NSR model, the dashed lines to the NS model. The constitutive coefficients are reported as ratios with respect to those

estimated by the ND model.
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physical situation, their axial distribution is determined as a solution of the associated 1D boundary value

problem, consisting of balance equations (32), suitable boundary conditions, and the specific form of the

constitutive relations (i.e. Eqs. (59) for the ND model, Eqs. (58) for the NS model and Eqs. (48) for the

NSR model). Each model associates given beam generalized deformations (u0;w00; V ) to different distribu-
tion of the three-dimensional state fields (T;D;S;E). Such distributions are determined as follows: (i)
generalized stresses (ra;i; fa;i;D3;i) are found by local constitutive equations in the form (36) or (56); (ii) the
three-dimensional stress state (T;D) is obtained from the latter through Eqs. (11) and (12); (iii) finally, the
3D generalized deformations can be found through 3D constitutive equations in the form (2e). Here and
henceforth, we will refer to the 3D deformations and electric filed found in this way as constitutive induced

deformation and electric field (S;E). Indeed, they are the deformation and electric field determined by the
stress and electric displacement (T;D) through constitutive equations (2e). As a peculiarity of the reduced
model deduced by a mixed variational formulation, in general they differ from the mechanical strain S and

the electric field E compatible with the kinematical hypotheses (9) and (10). The (S;E) fields are those used
to evaluate the internal energy (3).

In the following, the distribution of the 3D state fields associated with the proposed NSR model is

compared to the ones related to the standard NS and ND models. In particular, the field distributions
corresponding to the following beam kinematical states are analyzed:
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• beam extension: ðu0 ! S0;w00 ! 0; V ! 0Þ,
• beam bending: ðu0 ! 0;w00 ! S0=z0; V ! 0Þ,
• applied voltage ðu0 ! 0;w00 ! 0; V ! V0Þ.

The distribution for a generic beam kinematical state (u;w; V ) can be regarded as a linear combination of
these three situations. In order to deal with non-dimensional deformations, stress, electric fields and electric

displacement, the following scaling quantities are introduced: S0 (characteristic mechanical deformation),
z0 ¼ hp (characteristic thickness dimension), T0 ¼ ~cE11S0 (characteristic mechanical stress), E0 ¼ S0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~cE11=~e

S
33

p
(characteristic electric field), D0 ¼ S0

ffiffiffiffiffiffiffiffiffiffiffi
~cE11~e

S
33

p
(characteristic electric displacement), and V0 ¼ E0z0 (charac-

teristic voltage).

The cases of a two-layered beam and a three-layered beam are considered; the thickness ratio between

the piezoelectric and the elastic layers (g ¼ hb=hp) is fixed to 2. For sake of brevity, for the three-layered
beam only the more interesting configuration of a counter-phase connection between the piezoelectric

layers is considered. In this case, the electric potential across the electrodes is coupled only to beam

bending. We report in Figs. 6 and 7 the distribution of the non-zero component of the three-dimensional

strain, stress, electric field and electric displacement for imposed beam bending ðu0 ! 0;w00 ! S0=z0; V ! 0Þ
and applied voltage ðu0 ! 0;w00 ! 0; V ! V0Þ, respectively. For the two-layered beam in Fig. 5, extension,
bending, and applied voltage are all coupled, both by mechanical and piezoelectric effects. We report in

Fig. 8–10 the corresponding three-dimensional field distribution for imposed beam extension

ðu0 ! S0;w00 ! 0; V ! 0Þ, bending ðu0 ! 0;w00 ! S0=z0; V ! 0Þ, and applied voltage ðu0 ! 0;w00 ! 0;
V ! V0Þ, respectively. The distributions associated to the ND, NS and NSR models are compared (dashed,
Fig. 6. 3D-field distribution for the three-layered sandwich piezoelectric beam with a counter-phase electric connection and a thickness

ratio g ¼ hb=hp ¼ 2. A mechanical bending is imposed ðu0 ! 0;w00 ! S0=z0; V ! 0Þ.



Fig. 7. 3D-field distribution for a counter-phase connected three-layered sandwich piezoelectric beam with a counter-phase electric

connection and a thickness ratio g ¼ hb=hp ¼ 2. An electric potential is imposed ðu0 ! 0;w00 ! 0; V ! V0Þ.
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dotted and continuous lines, respectively). Components of strain and stress tensors, electric fields and
electric displacement vectors are identified by usual index notation.

4.2.1. Comments

The analysis of Figs. 6–10 highlights some important features of the through-the-thickness field distri-

butions related to the different beam models, giving also a deeper insight into the phenomena evoked when

discussing the beam constitutive coefficients and their dependence on the thickness ratio between the pie-

zoelectric and the elastic layers.

(i) The NSR model accounts for transverse interactions between different layers and transverse deformations

related to cross-section bending and extension. When a potential difference is applied across the electrodes

of the piezoelectric layers, and the axial deformations are imposed to be null, layerwise linear, but dis-

continuous, transverse stresses T22 appear. These stresses conciliate the piezoelectrically induced trans-
verse deformations of piezoelectric layers with the strain state in the elastic layer and the perfect bonding

condition. Moreover, the NSR model accounts for uniform cross-section transverse bending and exten-

sion, as evident from the linear continuous distribution of S22 in Fig. 7 (simple bending of the three-lay-
ered sandwich beam) and in Fig. 10 (combined bending and extension for the two-layered beam).
Similar phenomena are revealed also for imposed axial deformations and null potential difference V :
when a bending deformation w00 is imposed on the three-layered beam, the NSR model account for a

transverse sectional bending and layerwise linear transverse stresses T22 (see S22 and T22 plots in Fig.
6). Similar considerations hold also for imposed extension and bending of the two layered beam (see

S22 and T22 plots in Figs. 8 and 9).



Fig. 8. 3D-field distribution for a two-layered sandwich piezoelectric beam with a thickness ratio g ¼ hb=hp ¼ 2. A mechanical

extension is imposed ðu0 ! S0;w00 ! 0; V ! 0Þ.
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(ii) The NS model neglects transverse interactions between different layers and does not take into account the

bonding condition in the transverse direction. By condition (14), each layer is left free to deform along

the width, independently of the others (see the dotted lines in the S22 plots of Figs. 6–10). For example,
when a potential difference is applied, while the central elastic layer does not deform along the width,

the upper piezoelectric layer extends, the lower one shrinks uniformly, and the bonding condition is

not satisfied at the interface (see the S22 plot in Fig. 7).
(iii) The ND model neglects transverse sectional deformations and transverse stress transfer between different

layers. In each layer transverse stresses are determined by the condition of transverse rigidity, indepen-

dently of the state of other layers (see the dashed lines of the T22 plots in Figs. 6–10). For example,
when a potential difference is applied to the three-layered beam (Fig. 7), transverse T22 stresses arise
in order to assure null transverse deformation; these stresses are present only in the piezoelectric layers

and they do not influence the state of the central elastic layer.

(iv) All the three models coherently leave the cross section free to deform in the thickness direction.By assum-

ing vanishing normal stress T33 (all three models assume a stress distribution in the form (11)), a sec-
tional distension along the thickness direction is implicitly accounted for (see the layerwise linear

distribution of S33 in Figs. 7–10). When no forces are prescribed on the beam lateral boundary, each
layer either shrinks or extends along the thickness independently of all the others. This component of
the deformation is naturally induced both by the standard Poisson effect and piezoelectric coupling

(so-called 33 coupling).

(v) All three models coherently account for a linear contribution to the electric field in bent piezoelectric lay-

ers. Since by hypothesis (12) the electric displacement has been assumed to be layerwise constant, the



Fig. 9. 3D-field distribution for a two-layered sandwich piezoelectric beam with a thickness ratio g ¼ hb=hp ¼ 2: A mechanical bending
is imposed ðu0 ! 0;w00 ! S0=z0; V ! 0Þ.
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linear part of the mechanical deformation constitutively induces a linear contribution to the electric

field (quadratic contribution to the electric potential). Hence, when the piezoelectric layers are bent,

linear contributions to the electric field are present (see E3 plots in Figs. 6–10). As a related effect, when
the potential difference applied across the electrodes is null (condition V ¼ 0), piezoelectric layers are
characterized by two different mechanical stiffnesses (see local constitutive equations (36) and (56)): the

constant contribution to the mechanical deformation is characterized by the mechanical stiffness for a
null electric field (superscript E) and the linear contribution by the mechanical stiffness for a null elec-

tric displacement (superscript D). Indeed, for V ¼ 0, the constant part of the electric potential is null,
while the linear part is arbitrary; at the same time, the linear part of the electric displacement is null

because of hypothesis (12), while the constant one is arbitrary. Hence, the constant part of the mechan-

ical deformation is affected by condition E3 ¼ 0 and the linear one by condition D3 ¼ 0.
(vi) The intensity of the electric displacement for a given electric potential and axial deformation depends on

the transverse stress and strain state. It is at a maximum when transverse stresses are null and piezoelec-

tric layers can freely extend or shrink along the width; it is at a minimum when transverse deformations
are constrained to be null; it attains a value between these extremes when neither transverse stresses nor

transverse deformations are null. As an example, in the D3 plots of Figs. 7 and 10, the value of the
electric displacement predicted by the NSR model is in between those of the NS and ND models, being

null neither transverse stress nor transverse strain. This effect is directly related to the difference in the

estimates of the equivalent piezoelectric capacitance per unit length eqV in the beam constitutive equa-
tions: the NSR model, by catching non-trivial transverse interactions between different layers, fur-

nishes a more realistic estimate of the electric displacement intensity for a given electric potential

and axial deformation (and consequently of eqV ).



Fig. 10. 3D-field distribution for a two-layered sandwich piezoelectric beam with a thickness ratio g ¼ hb=hp ¼ 2: An electric potential
is imposed ðu0 ! 0;w00 ! 0; V ! V0Þ.
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5. Conclusions

In this paper, models of layered piezoelectric beams accounting for direct and inverse electromechanical

coupling were discussed. An equivalent-single-layer Euler–Bernoulli model was deduced from a three-

dimensional continuum model by a mixed variational principle. The estimates obtained by simplest

modelling approaches are refined without adding additional degrees-of-freedom (such as shear deforma-
tions, multilayer kinematics, higher-order electric field distribution, etc.). The model is based on hypotheses

(9)–(12) and weak condition (13) on transverse stresses (null transverse stress resultants). Its main pecu-

liarities reside in the following points: (i) to account for transverse interactions between different layers and

sectional bending and extension in the transverse direction (thanks to the non-standard weak condition (13)

on transverse stress); (ii) to include as state variables all the electric and mechanical state fields and to

account for full two-fold piezoelectric coupling between them; (iii) to account for bending of the piezo-

electric layers by including coherent distributions of electric field and displacement (by imposing in the

mixed variational formulation a layerwise constant distribution of the electric displacement through
hypothesis (H4)).

The attention was focused on the influence of hypotheses on transverse normal stress and strain on the

deduction of the beam constitutive coefficients from three-dimensional material and geometric properties

and on the reconstruction of the through-the-thickness distribution of three-dimensional state fields. It was

shown that, differently from models assuming either null transverse deformations or null transverse stress,

the model assuming null transverse stress resultants takes into account transverse interactions between

different layers and the related non-trivial transverse strain and stress distribution. As main benefit, such a
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model correctly estimates the beam constitutive coefficients relating axial deformations and potential dif-

ference across piezoelectric layers to axial stress resultants and stored charge. In particular, one of the main

weaknesses shown by standard one-dimensional models is overcome by improving the estimate of equiv-

alent piezoelectric capacitance. Indeed, this property is strongly dependent on the assumed distribution of
transverse strain and stress.

The theoretical analysis developed in the present paper was motivated by some experimental falsifica-

tions of the ND and NS models. More precisely, a preliminary set of measurements which we performed

indicated that the piezoelectric capacitance of layered beams were not correctly predicted. As a natural

extension of the present work, future investigations will involve the experimental validation of the presented

NSR model and its estimates of electromechanical constitutive properties. To this end, experimental setups

aimed at the characterization of the electrical and mechanical properties of layered piezoelectric beams

must be performed. On the other hand, the most prominent theoretical refinement to be included in the
model is the description of non-perfect bonding between different layers and the main phenomena related to

the presence of the bonding layer.
Appendix A. Constitutive coefficients

A.1. Local constitutive equations

The constitutive coefficients appearing in the form (36) of the local constitutive equations are expressed

as a function of ðsE11; sE12; d31; b
T
33Þ as follows. They correspond to the constitutive coefficients of the 3D

piezoelectric constitutive equations in the so-called S–E form for a plane-stress condition in the e1–e2 plane

and a uniaxial electric displacement along e3.
~cE11 ¼
sE11

ðsE11Þ
2 � ðsE12Þ

2
; ðA:1Þ

~cE12 ¼ � sE12
ðsE11Þ

2 � ðsE12Þ
2
; ðA:2Þ

~e31 ¼ � d31
sE11 þ sE12

; ðA:3Þ

~�S33 ¼
1

bT33
� 2 d231

sE11 þ sE12
; ðA:4Þ

~cD11 ¼ ~cE11 þ ~e231=~e
S
33; ðA:5Þ

~cD12 ¼ ~cE12 þ ~e231=~e
S
33: ðA:6Þ
On the other hand, in Eqs. (56) the constitutive coefficients for an uniaxial stress along e1 and an uniaxial

electric displacement along e3 appear. The are given by
ĉE11 ¼ ~cE11ð1� ð~cE12=~cE11Þ
2Þ ¼ 1

sE11
; ðA:7Þ

ê31 ¼ ~e31ð1� ~cE12=~c
E
11Þ ¼ � d31

sE11
; ðA:8Þ
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�̂S33 ¼ ~�S33 1

 
þ ~e231
~cE11~�

S
33

!
¼ 1

bT33
� d

2
31

sE11
; ðA:9Þ

ĉD11 ¼ ~cD11ð1� ð~cD12=~cD11Þ
2Þ ¼ ĉE11 þ ê231=�̂S33: ðA:10Þ
For the elastic layers, the coefficients (~c11;~c12) and ĉ11 are found by expressions analog to (A.1) and (A.2)
where piezoelectric compliances must be substituted by the corresponding elastic compliances.

A.2. Global constitutive equations

The constitutive coefficients appearing in Eq. (41) are found by substituting the local constitutive

equations (36) and the relations of kinematical compatibility in the definition of the stress resultants (33)

and (37). The following expressions are found:
kNu ¼ kðNDÞ
Nu ¼

X
i2Ip

Ai~cE11 þ
X
i2Ie

Ai~c11;

kNw ¼ kðNDÞ
Nw ¼

X
i2Ip

Ai�zi~cE11 þ
X
i2Ie

Ai�zi~c11;

kMw ¼ kðNDÞ
Mw ¼

X
i2Ip

ðAi�z2i ~cE11 þ ~cD11JiÞ þ
X
i2Ie

~c11ðAi�z2i þ JiÞ;

eNV ¼ eðNDÞ
NV ¼

X
i2Ip

Aixi~e31=hi ¼
X
i2Ip

aixi~e31;

eMV ¼ eðNDÞ
MV ¼

X
i2Ip

xi~e31�ziai;

�qV ¼ �
ðNDÞ
qV ¼

X
i2Ip

ai~�S33=hi;

kNk ¼
X
i2Ip

Ai~cE12 þ
X
i2Ie

Ai~c12;

kNl ¼
X
i2Ip

Ai�zi~cE12 þ
X
i2Ie

Ai�zi~c12;

kMl ¼
X
i2Ip

ðAi�z2i ~cE12 þ Ji~cD12Þ þ
X
i2Ie

~c12ðAi�z2i þ JiÞ:

ðA:11Þ
Similarly, the constitutive constants appearing in Eq. (58) are found by the local constitutive equations (56).

They are given by
kðNSÞNu ¼
X
i2Ip

AiĉE11 þ
X
i2Ie

Aiĉ11;

kðNSÞNw ¼
X
i2Ip

�ziAiĉE11 þ
X
i2Ie

�ziAiĉ11;

kðNSÞMw ¼
X
i2Ip

ðĉD11Ji þ �z2i Aiĉ
E
11Þ þ

X
i2Ie

ĉ11ðJi þ �z2i AiÞ;

eðNSÞMV ¼
X
i2Ip

�ziAiê31xi=hi;

eðNSÞNV ¼
X
i2Ip

Aiê31xi=hi;

�
ðNSÞ
qV ¼

X
i2Ip

ai=hi�̂S33:

ðA:12Þ



4502 C. Maurini et al. / International Journal of Solids and Structures 41 (2004) 4473–4502
References

Alzahrani, B.A., Alghamdi, A.A.A., 2003. Review of the mechanics of materials models for one-dimensional surface-bonded

piezoelectric actuators. Smart Mater. Struct. 12, N1–N4.

Anderson, E.H., Hagood, N.W, 1994. Simultaneous piezoelectric sensing/actuator: analysis and application to controlled structures.

J. Sound Vibrat. 174 (5), 617–639.

Batra, R.C., Vidoli, S., 2002. Higher-order piezoelectric plate theory derived from a three-dimensional variational principle. AIAA J.

40 (1), 91–104.

Beckert, W., Pfundtner, G., 2002. Analysis of the deformational behaviour of a bimorph configuration with piezoelectric actuation.

Smart Mater. Struct. 11, 599–609.

Chee, C.Y.K., Tong, L.S., Grant, P., 1998. Review on the modelling of piezoelectric sensors and actuators incorporated in intelligent

structures. J. Intell. Mater. Syst. Struct. 9 (1), 3–19.

Chopra, I., 2002. Review of state of art of smart structures and integrated systems. AIAA J. 40 (11), 2145–2187.

Crawley, E.F., de Luis, J., 1987. Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25, 1375–1385.

Crawley, E.F., Anderson, E.H., 1990. Detailed models of piezoceramic actuation of beams. J. Intell. Mater. Syst. Struct. 1, 12–25.

Eringen, A., Maugin, G.A., 1990. Electrodynamics of Continua I. Springer, New York.

Gopinathan, S.V., Varadan, V.V., Varadan, V.K., 2000. A review and critique of theories for piezoelectric laminates. Smart Mater.

Struct. 9, 24–48.

Hagood, N.W., Von Flotow, A., 1991. Damping of structural vibrations with piezoelectric materials and passive electrical networks.

J. Sound Vibrat. 146, 143–168.

He, J.-H., 2000. Generalized Hellinger–Reissner principle. J. Appl. Mech. 67, 326–331.

Hong, C.H., Chopra, I., 1999. Modeling and validation of induced strain actuation of composite coupled plates. AIAA J. 37, 372–377.

Ikeda, T., 1990. Fundamentals of Piezoelectricity. Oxford University Press, New York.

Park, C., Walz, C., Chopra, I., 1996. Bending and torsion models of beams with induced-strain actuators. Smart Mater. Struct. 5,

98–113.

Rao, S.S., Sunar, M., 1994. Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey. Appl. Mech.

Rev. 47, 113–123.

Saravanos, D.A., Heyliger, P.R., 1999. Mechanics and computational models for laminated piezoelectric beams, plates, and shells.

Appl. Mech. Rev. 52, 305–320.

Sze, K.Y., Yang, X.-M., Fan, H., in press. Electric assumptions for piezoelectric laminate analysis. Int. J. Solids Struct. 41, 2363–2382.

Tani, J., Takagi, T., Qui, J., 1998. Intelligent material systems: application of functional materials. Appl. Mech. Rev. 51, 505–521.

Teresi, L., Tiero, A., 1997. On variational approaches to plate model. Meccanica 32, 143–156.

Washizu, K., 1982. Variational methods in Elasticity and Plasticity. Pergamon Press, New York.

Yang, J.S., Batra, R.C., 1995. Mixed variational principles in nonlinear piezoelectricity. Int. J. Nonlinear Mech. 30 (5), 719–726.


	On a model of layered piezoelectric beams including transverse stress effect
	Introduction
	Mixed variational formulation of 3D linear piezoelectricity
	Equations of linearly piezoelectricity
	Mixed variational formulation and reduced models

	Beam models
	Definitions and hypotheses
	Geometry and materials
	Hypotheses
	Beam state fields

	Model with null transverse stress resultants (NSR model)
	Variational formulation
	Balance equations
	Constitutive equations

	Model with pointwise null transverse stress (NS model)
	Variational formulation
	Balance equations
	Constitutive equations

	Model with null transverse strain (ND model)
	Variational formulation


	Results and comments
	Constitutive coefficients
	Three-layered sandwich beam
	Two-layered beam

	Comparison of 3D fields underlying the ND, NS and NSR models
	Comments


	Conclusions
	Constitutive coefficients
	Local constitutive equations
	Global constitutive equations

	References


